The need for reliable, ubiquitous connectivity

Insufficient coverage for mobile connectivity

- White spots in terrestrial networks
- · Insufficient capacity in rural areas
- Offshore areas
- Airspace

Temporarily / locally insufficient capacity

- Agriculture
- Construction areas
- Cultural and sports events
- Disaster recovery

Consortium

Fraunhofer

OTARIS

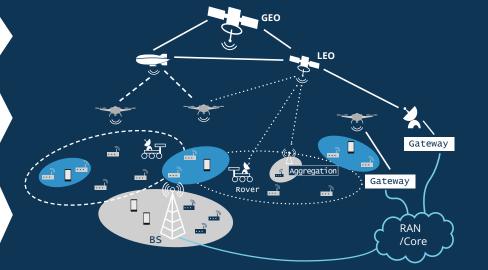
Associated Partners

www.6g-takeoff.de info@6g-takeoff.de

3D Networks

Processing platforms for network functions on different heights

SPACE SEGMENT


Multi-orbit: LEO, MEO, GEO satellites

AIR SEGMENT

- HAPS: Stratospheric airplanes, balloons
- LAPS: Drones

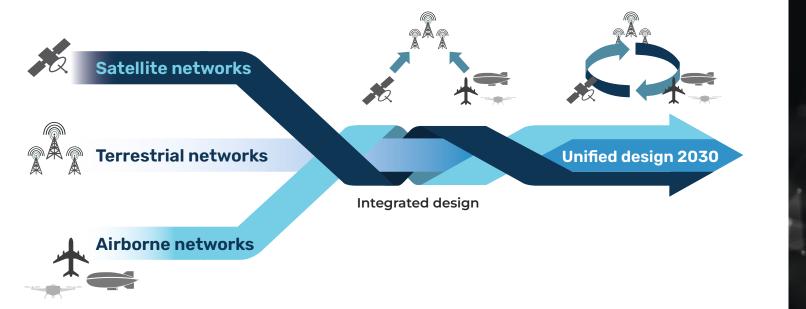
GROUND SEGMENT

- Terrestrial sites
- User equipment
- Customer premises equipment

Different properties with respect to:

Performance

Coverage, capacity, data rate / link budget, latency, processing capabilities


Geography / economics

Global business model needed for LEOs; local business model sufficient for HAPS

Flexibility, mobility

dynamically provide service links, adapt information flow. processing and re-routing

Unified 3D Networks

4G & Before

Design independently and exclusively optimized for terrestrial networks

5G & B5G

Design optimized for terrestrial network component. Minimum impact to support integration of satellite for coverage and components availability extension

6G & Beyond

Design optimized for a unified network of terrestrial, airborne and spaceborne

The infrastructures of 3D Networks will be moving

Key challenges:

- Nodes can join / leave network dynamically
- Security requirement: authentication of joining nodes
- Connectivity management for air interface and backhaul
- Dynamic reallocation of network functions
- Steerable high-gain antenna systems
- Reconfigurable hardware / microelec-

Novel Network Architecture:

- 3D: Ground, LAPS, HAPS, LEO, GEO
- Dynamically varying network structure

Key Technologies:

- Dynamic connectivity management and allocation of network functions
- Highly automatic operation, based on Information Flow Processing and AI/ML
- Relevance Information Preserving Flow Processing

Key Components:

Reconfigurable HW platforms and communication modules of LEOs